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Abstract

The theory of direct experimental identification of damping matrix based on the dynamic stiffness matrix (DSM)

method is further developed in this work. Based on the relationship between the DSMs of the smaller experimental model

and larger analytical model, the mathematical relationship between the damping matrices of the two models is established.

Examining the relationship, two methods are developed that can be used to expand the experimental damping matrix to

the size of the analytical model. Validity of the expansion methods is demonstrated with numerical examples. The

expanded damping matrix is intended to be combined with analytically formulated stiffness and mass matrices to build an

experimental–analytical hybrid model. To find the frequency range, in which such a hybrid modeling is valid, a simple but

effective method is developed.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A damping model should represent both the mechanism and spatial distribution of the energy loss in the
system. In contrast to the mass and stiffness matrices, formulation of the damping matrix still stands as a big
challenge in modeling a linear dynamic system. Commonly used simple models such as the proportional
damping or structural damping model are used for no reason but mathematical convenience. Various models
such as viscoelastic [1,2], friction [3], micro-slip [4], and air damping [5,6] have been used to describe damping
mechanism, while much less efforts have been made to represent the spatial distribution of damping.

Motivated by the desire for accurate simulation of dynamic systems, a substantial amount of research effort has
been made to develop experimental damping identification methods. In those methods a proportional or
structural damping matrix is frequently used, which is not finding but assuming the forms for the mechanism and
the spatial distribution of damping. Furthermore, the damping matrix is formulated often by utilizing modal
parameters such as natural frequencies, natural modes, and modal damping ratios extracted from measured
frequency response functions (FRFs) [7–17]. There are some methods developed to obtain the damping matrix
directly from measured FRFs, thus eliminating the need to identify modal parameters [18–22].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

Ao1 coefficient matrix
c viscous damping coefficient
C viscous damping matrix
Ci ith coefficient matrix
dof degree of freedom
DSM dynamic stiffness matrix
D structural damping matrix
f iðoÞ ith frequency function
FRF frequency response function
FðoÞ harmonic force vector
H(o) FRF matrix
Hexp(o) experimental FRF matrix
HhðoÞ FRF matrix of the hybrid model
I identity matrix
j complex term ¼

ffiffiffiffiffiffiffi
�1
p� �

k number of frequency points/stiffness
ki stiffness of ith element
K stiffness matrix
KRmm ðoÞ stiffness matrix of the experimental

model
L(o) generalized damping matrix
LhðoÞ expanded damping matrix
LRmm ðoÞ damping matrix of the experimental

model

m subscript for measured degrees of free-
dom

mi mass of ith element
M number of measurement points
M mass matrix
MRmm ðoÞ mass matrix of the experimental model
N number of degrees of freedom of the

analytical model
RumðoÞ transformation matrix
S number of frequency functions
SDðoÞ DSM of analytical model
SDR
ðoÞ experimental DSM

T(o) transformation matrix
~TðoÞ real-valued approximate transformation

matrix
u subscript for unmeasured degrees of

freedom
un nth function
XðoÞ harmonic response vector
eðoÞ error matrix
epðoÞ percent error matrix is
o circular frequency (rad/s)
1i vector with all components as zero but

the component at ith row
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The damping identification method developed by Lee and Kim [23] which identifies damping matrices
directly from measured frequency response functions is unique as it formulates the damping matrix from the
dynamic stiffness matrix (DSM). The DSM is obtained by inverting the measured FRF matrix, which is
utilizing the fact that the imaginary part of the DSM is the damping matrix.

The DSM-based direct damping identification method is very attractive because it can be applied to any
linear dynamic systems and does not use any arbitrary assumptions. However two fundamental issues
were encountered while implementing the method [24–26], which are the difficulty of expanding the
identified matrix to the size of the analytical model of the system and the high sensitivity of the accuracy
of the result to measurement errors. While these issues are being addressed in our ongoing research,
this paper deals with the first one, expansion of the identified damping matrix to the size of the analytical
model. Major outcomes of the study presented in this paper are: (1) explicit relationship between the smaller,
identified damping matrix and the larger damping matrix of the analytical model, (2) error analysis to
understand the limitation of the DSM-based damping identification method, and (3) the method to expand the
experimentally formulated damping matrix to the size of the analytical model to formulate the hybrid system
equation.
2. Theoretical development

2.1. Dynamic stiffness matrix-based damping matrix identification [23]

Direct damping identification method developed by Lee and Kim [23] can be summarized in
three steps. In the first step, measured frequency response functions are put into a square matrix form
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as follows:

HexpðoÞ ¼

H11ðoÞ H21ðoÞ � � � H1MðoÞ

H12ðoÞ H22ðoÞ � � � ..
.

..

. ..
. . .

. ..
.

HM1ðoÞ � � � � � � HMM ðoÞ

2
6666664

3
7777775
, (1)

where Hexp(o) is the experimental frequency response function matrix, o is the circular frequency (rad/s) and
M is the number of measurement points. In the second step, the dynamic stiffness matrix SDexp ðoÞ defined at
the experimental degrees of freedom (dofs) is computed by inverting Hexp(o); i.e.

SDexp ðoÞ ¼ HexpðoÞ
�1. (2)

The final step utilizes the fact that the real part of the dynamic stiffness matrix SDexp ðoÞ represents the mass
and stiffness properties and the imaginary part represents the loss property, i.e.; SDexpðoÞ ¼ �o

2Mexpþ

jLexpðoÞ þ Kexp, where Mexp is the mass matrix, Kexp is the stiffness matrix of the experimental model, and
j ¼

ffiffiffiffiffiffiffi
�1
p

. LexpðoÞ, a generalized damping matrix, can be obtained as

LexpðoÞ ¼ Imag SDexp ðoÞ
� �

, (3)

where LexpðoÞ becomes a matrix of general function of frequency. The frequency distribution at each matrix
element represents the damping mechanism at the corresponding nodal point and relative magnitudes of the
elements at the given frequency point represent the spatial distribution of damping. The viscous and structural
damping matrices Cexp and Dexp are special cases that can be found by the linear regression of the measured
frequency response functions as follows:

Dexp

Cexp

" #
2M�M

¼

I o1I

I o2I

: :

: :

I okI

2
6666664

3
7777775

þ

kM�2M

Imag Hexpðo1Þ
�1

� �
Imag Hexpðo2Þ

�1
� �

:

:

Imag HexpðokÞ
�1

� �

2
66666664

3
77777775

kM�M

, (4)

where ‘‘+’’ represents the pseudo-inverse of the matrix, I is the identity matrix, and k is the
number of frequency points of the frequency response function data used in the regression. The set of
matrices Cexp and Dexp found as such will be the best representation of the damping by a linear function
of the frequency.

While the identification procedure provides a damping matrix of the size of experimental degrees of
freedom, we often need a matrix of much larger size. Building an experimental-FEM hybrid model by
combining an experimentally identified damping matrix and theoretically formulated mass and stiffness
matrices is a good example. In order to expand the damping matrix obtained from the DSM-based approach,
the relationship between the damping matrices of different sizes of the same system should be derived. To
achieve this objective, first the dynamic stiffness matrix of the large size analytical model and the dynamic
stiffness matrix of the smaller size experimental model is related in Section 2.2. Then finally, an explicit
relationship between the damping matrices of the larger, analytical model and the smaller experimental model
is derived in Section 2.4.

2.2. Relating experimental and analytical models

Both the analytical and experimental models approximate the original continuous system of infinite degrees
of freedom by finite number of dofs as illustrated in Fig. 1. Usually the number of dofs of the experimental
model is much smaller than that of the analytical model. We consider that the analytical model has N degrees
of freedom, and M of those are measured degrees of freedom of the experimental model.
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In the analytical model of N degrees of freedom, harmonic input–output relationship between the response
X(o) and the force F(o) is

SDðoÞXðoÞ ¼ FðoÞ, (5)

where SDðoÞ is the dynamic stiffness matrix of size N�N, which is defined as

SDðoÞ ¼ �o2Mþ jLðoÞ þ K. (6)

The response and force vectors can be arranged by partitioning measured and unmeasured groups of
degrees of freedom:

XðoÞ ¼
XmðoÞ

XuðoÞ

( )
, (7)

FðoÞ ¼
FmðoÞ

FuðoÞ

( )
, (8)

where subscripts m and u in Eqs. (7) and (8) stand for the measured and unmeasured parts.
The harmonic input–output relationship of the analytical model can also be written using the FRF matrix

as follows:

XðoÞ ¼ HðoÞFðoÞ. (9)

When partitioned into measured and unmeasured components, Eq. (9) becomes

XmðoÞ

XuðoÞ

( )
¼

HmmðoÞ HmuðoÞ

HumðoÞ HuuðoÞ

" #
FmðoÞ

FuðoÞ

( )
, (10)

where HmmðoÞ is the measured frequency response function matrix.
In a typical modal test, the structure is excited only at measurement points, thus FuðoÞ ¼ 0. The harmonic

input–output relation of the full-size analytical model that describes the experiment becomes

XmðoÞ

XuðoÞ

( )
¼

HmmðoÞ HmuðoÞ

HumðoÞ HuuðoÞ

" #
FmðoÞ

0

	 

. (11)

Substituting FuðoÞ ¼ 0 into Eq. (5), the DSM relationship can also be rewritten in the same manner:

SDmm ðoÞ SDmu ðoÞ

SDum ðoÞ SDuuðoÞ

" #
XmðoÞ

XuðoÞ

( )
¼

FmðoÞ

0

	 

. (12)

On the other hand, the DSM relationship of the experimental model is

SDR
ðoÞXmðoÞ ¼ FmðoÞ, (13)

where SDR
ðoÞ stands for the dynamic stiffness matrix of the experimental model. The subscript ‘‘R’’ is used

replacing the subscript ‘‘exp’’ used earlier for Eq. (2), because the experimental model is essentially a
Real structure

Discrete Mathematical Model

Experimental Model

Fig. 1. Models of different number of degrees of freedom for the same structure.
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‘‘reduced’’ version of the analytical model. As defined in Eq. (2), the experimental dynamic stiffness matrix is
the inverse of the measured frequency response function matrix, i.e. SDR

ðoÞ ¼ HmmðoÞ
�1.

Eq. (12) can be rewritten as

SDmm ðoÞXmðoÞ þ SDmuðoÞXuðoÞ ¼ FmðoÞ, (14)

SDum ðoÞXmðoÞ þ SDuu ðoÞXuðoÞ ¼ 0. (15)

From Eq. (15):

XuðoÞ ¼ �SDuu ðoÞ
�1SDum ðoÞXmðoÞ. (16)

Substituting Eq. (16) into Eq. (14), the following equation is obtained:

SDmm ðoÞ � SDmu ðoÞSDuu ðoÞ
�1SDumðoÞ

� �
XmðoÞ ¼ FmðoÞ. (17)

Comparing Eqs. (17) and (13), we realize:

SDR
ðoÞ ¼ SDmm ðoÞ � SDmuðoÞSDuuðoÞ

�1SDum ðoÞ. (18)

Eq. (18) relates SDR
ðoÞ, dynamic stiffness matrix of the experimental model, and SDðoÞ, dynamic stiffness

matrix of the analytical model. Because our interest is on the relationship between damping matrices, we try to
derive an explicit relationship between the damping matrices, i.e., imaginary parts of these two DSMs.

The dynamic stiffness matrix of the experimental model SDR
ðoÞcan be written as

SDR
ðoÞ ¼ �o2MRmm ðoÞ þ jLRmm ðoÞ þ KRmm ðoÞ, (19)

where MRmm ðoÞ, LRmm ðoÞ and KRmm ðoÞ are the mass, damping and stiffness matrices of the reduced-size
experimental model. In the appendix, it is shown that these matrices are related with those of the analytical
model as follows:

MRmm ðoÞ ¼ TðoÞTMTðoÞ, (20)

LRmm ðoÞ ¼ TðoÞTLðoÞTðoÞ, (21)

KRmm ðoÞ ¼ TðoÞTKTðoÞ. (22)

The transformation matrix T(o) relates the measured portion of the response vector to the full-size response
vector, i.e., XðoÞ ¼ TðoÞXmðoÞ. We note:

TðoÞ ¼
I

�SDuuðoÞ
�1SDum ðoÞ

" #
. (23)

From Eq. (21), the damping matrix of the reduced-size experimental model can be found from the damping
matrix of the full-size analytical model; however, what we need is the other way, finding the latter from the
former. That procedure will be developed in later discussions.

The process to represent a larger model using a subset of the degrees of freedom, in our case the
experimental model, is often called ‘‘dynamic condensation’’ in literature. The formulation of the reduced
dynamic stiffness matrix given in Eq. (19) is common to most condensation methods available. Some of these
methods formulate an equivalent dynamic transformation matrix defined similar to Eq. (23). System
Equivalent Reduction Expansion Process (SEREP) [27] and Improved Reduced System (IRS) [28] are
examples to these kinds of methods. Reviews of this group of methods can be found in Refs. [29,30]. Another
group of methods uses an iterative approach to obtain the equivalent dynamic transformation matrix.
A review of iterative condensation methods can be found in Ref. [31]. In both approaches, the main objective
is to obtain a dynamic transformation matrix that will result in a DSM of the reduced model which can
produce accurate modal parameters of the structure of interest. Among the iterative methods, the one
developed by Paz [32] derives the dynamic transformation matrix in the exact same form of Eq. (23). However,
Paz’s method [32] uses an iterative procedure to come up with the frequency value that will result in an
optimum equivalent transformation matrix [30], while in our study the dynamic transformation matrix is kept
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frequency dependent. The dynamic transformation matrix as defined in Eq. (23) represents an exact,
frequency-by-frequency condensation of the DSM of the original degrees of freedom to a reduced size.

Before proceeding further, we discuss frequency dependency of the matrices of the experimental model
utilizing the relationships shown in Eqs. (20)–(22).
2.3. Frequency dependency of system matrices of the experimental model

Examining the system matrices of the experimental model defined in Eqs. (20)–(22), it is seen that they are
not constant but functions of frequency because the transformation matrix T(o) is a function of frequency.

This effect can be demonstrated using a numerical example. Suppose that a 4 degrees of freedom model is
described by a 2 degrees of freedom experimental model as shown in Fig. 2. The situation can be interpreted as
that we obtain a 2 degrees of freedom experimental model by measuring the 2nd and 4th degrees of freedom of
a structure originally represented by a 4 degrees of freedom analytical model. Stiffness and mass values are
k1 ¼ 2.5� 105N/m, k2 ¼ 3.5� 105N/m, k3 ¼ 2.0� 105N/m, k4 ¼ 3.0� 105N/m, m1 ¼ 1.3 kg, m2 ¼ 3.1 kg,
m3 ¼ 1.3 kg and m4 ¼ 2.0 kg.The damping matrix is defined as C ¼ 5.0� 10�5 �K.

Diagonal elements of the system matrices of the experimental model, MRmm ðoÞ, LRmm ðoÞ and KRmm ðoÞ, are
plotted in Figs. 3a–c in the frequency range that includes all four modes of the analytical model. In the low-
frequency range, these plots show that mass and stiffness parameters are constant and damping parameters
are linear functions of frequency as expected. All parameters however, become very large around 98.7Hz and
108Hz. The plot of two elements of the transformation matrix T(o) in Fig. 4 shows two peaks at the same
frequencies too. This observation explains the somewhat unexpected frequency dependency of the elements of
the system matrices of the experimental model around 98.7 and 108Hz. Noting that the term �SDuu ðoÞ

�1 is
included in the transformation matrix T(o) in Eq. (23), these frequencies are recognized as the eigenvalues of
SDuu ðoÞ, the unmeasured part of the dynamic stiffness matrix of the analytical model.

The alternative expression for the experimental dynamic stiffness matrix in Eq. (18), also contains the term
SDuu ðoÞ

�1 which means that the peak effect will occur on the overall value of the experimental dynamic stiffness
matrix too. Note that a typical dynamic stiffness matrix has the form LðoÞ ¼ C1 þ oC2 þ o2C3. BecauseM, K C

in this case are constant matrices, real and imaginary parts of the elements of the DSM should normally appear as
quadratic and linear functions of frequency, respectively. Figs. 5 and 6 are the spatial plots of the real and
imaginary parts of the DSM of the 4 degrees of freedom original model, which clearly show the expected patterns
of the typical dynamic stiffness matrix. On the other hand, real and imaginary parts of the experimental dynamic
stiffness matrix SDR

ðoÞ plotted in Figs. 7 and 8 show the expected frequency dependency only in the low-frequency
range, however followed by sharp peaks and anti-peaks in the high frequency similar to the case of the system
matrices (Fig. 3). This observation indicates that the experimental model behaves like a typical dynamic stiffness
matrix, or in other words can be represented by constant valued system matrices, only in the low-frequency range
which falls to the left of the observed peaks. As we have already discussed, this frequency range is dictated by the
eigenvalues of SDuu ðoÞ. Around and beyond this particular frequency limit, it becomes impossible to represent the
reduced experimental model with system matrices that physically make sense.
x1(t) x2(t) x3(t) x4(t)

x2(t)

f2(t)

x4(t)

f4(t)

EXPERIMENTAL
MODEL

m1

f1(t)

c1

k1

m2

f2(t)

c2

k2

m3

f3(t)

c3

k3
f4(t)

k4

m4

c4

ORIGINAL
MODEL

Fig. 2. Numerical example: 4 degrees of freedom lumped parameter original model and 2 degrees of freedom experimental model.
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Experimental mass matrix MRmm ðoÞ, (b) experimental stiffness matrix KRmm ðoÞ, (c) experimental damping matrix LRmm ðoÞ.
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This frequency dependency issue of the system matrices of the experimental model is essentially a manifestation
of the fact that the size of the experimental model is insufficient for distinct spatial representation of the mode
shapes whose frequencies are close to or higher than the limiting frequency, the lowest eigenvalue of SDuu ðoÞ.

It should be noted that increasing the number of measured degrees of freedom increases the magnitude of
the lowest eigenvalue of SDuuðoÞ. This makes sense since increasing the size of the experimental model
increases the chances of accurate representation of higher frequency mode shapes otherwise problematic,
which also means that the limiting frequency must also be increased.

This type of frequency limitation of reduced dynamic models imposed by the nature of the dynamic
condensation is also discussed by Berman [33–35]. Berman recognizes the frequency dependency of systemmatrices
of reduced models and recommends that it should be properly taken into account when using the dynamic stiffness
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matrix of the reduced model. In another study by Lammens et al. [36], the limitation caused by the lowest
eigenvalue of SDuu ðoÞbecomes a challenge during the implementation of an FRF-based model updating
procedure. In this procedure, the error minimization scheme developed for updating the larger size FEA model
uses the dynamic stiffness matrix of the experimental model. They encounter the same problem of having sharp
peaks at the elements of the experimental dynamic stiffness matrix, and identify this peak frequency as the lowest
eigenvalue of SDuu ðoÞ. Recognizing this as a limitation, they recommend using frequencies lower than the first
eigenvalue of SDuu ðoÞ. A similar challenge is encountered in the case of optimum selection of measurement degrees
of freedom for experimental modal analysis purposes. The main objective in such a study is to select the
measurement dofs such that the mode shapes of interest can be distinctly identified. The method developed by
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Bouhaddi et al. [37] uses the dynamic condensation theory to obtain the limiting frequency of the experimental
model as the smallest eigenvalue of SDuu ðoÞ. It then uses this criterion for optimum selection of experimental dofs.
The selection of degrees of freedom is done iteratively with the objective of maximizing the limiting frequency.

The eigenvalues of the dynamic stiffness matrix component SDuu ðoÞ can actually be located by applying
the singular value decomposition to the measured frequency response function matrix HmmðoÞ. When singular
values of the measured frequency response function matrix HmmðoÞ are plotted as functions of frequency,
antiresonances observed in the plots occur at the eigenvalues of SDuu ðoÞ. Singular value plots of the measured
frequency response function matrix of the 2 degrees of freedom experimental model are shown in Fig. 9, which
shows two antiresonances that exactly match with the two eigenvalues of the SDuu ðoÞ. This is an important
observation because it indicates that the frequency range, in which the experimental model is valid, can be
directly found from the singular value plots of the measured frequency response function matrix HmmðoÞ
rather than by numerically computing the eigenvalues of SDuu ðoÞ.

Note that as seen in Fig. 10, which plots singular values of the FRF matrix of the original 4 degrees of
freedom model, singular value plots of the full-size FRF matrix H(o) do not contain any antiresonances. It
should also be noted that antiresonance points in the FRFs of the original model and antiresonance points in
the singular value plots of the measured frequency response function matrix HmmðoÞ, do not have any
correlations. This can be easily seen from the plots of the frequency response functions of the original 4
degrees of freedom model (Fig. 11), whose antiresonance points are different from the antiresonances of the
same system’s HmmðoÞ singular value plots (97 and 108Hz).

2.4. Relating damping matrices of the experimental and analytical models

In addition to the relationship between damping matrices of the experimental and analytical models
established in Eq. (21), there are two more important issues that have to be addressed.
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First, LRmm ðoÞ is not the entirety of the imaginary part of the experimental dynamic stiffness matrix because T(o)
is complex valued. By the same reason, MRmmðoÞ and KRmm ðoÞ are also not real, but complex valued. Therefore,

Imag SDR
ðoÞ

� �
¼ Imag jLRmm ðoÞ

� �
þ Imag �o2MRmm ðoÞ

� �
þ Imag KRmm ðoÞ

� �
. (24)

Consequently, LRmm ðoÞ will approximate the damping matrix, only if the imaginary part of T(o) is small
compared to its real part, i.e.

LRmm ðoÞ � ImagðSDR
ðoÞÞ. (25)

The plots in Fig. 12 are the real and imaginary parts of one of the elements of the transformation matrix
T(o) that relates the 2 degrees of freedom and 4 degrees of freedom models shown in Fig. 2. It is seen that the
imaginary component becomes large around 97Hz, which is the lowest eigenvalue of SDuuðoÞ. Fig. 13 shows
the same information as Fig. 12, but in terms of the percent ratio of the imaginary part to the real part. In the
low-frequency range of 0–70Hz, the imaginary part is smaller than 1% of the real part, meaning LRmm ðoÞ
accurately represents the damping effect of the experimental model.

Second, the transformation matrix T(o) contains the unmeasured parts of the dynamic stiffness matrix,
�SDuuðoÞ

�1SDum ðoÞ
� �

, which is not completely available as the analytical model only provides the mass and
stiffness terms of the unmeasured part of the system, but not the damping terms. However, in the frequency
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range in which T(o) is almost real, the transformation matrix can be approximated as follows:

TðoÞ � ~TðoÞ ¼
I

� �o2Muu þ Kuu

� ��1
�o2Mum þ Kuu

� �" #
. (26)

The new matrix ~TðoÞ in Eq. (26) can be considered as a real-valued, approximate transformation matrix.
Using this matrix in Eq. (21) combined with Eq. (25), the damping matrices of the models of two different sizes
can now be related as follows:

~TðoÞTLðoÞ ~TðoÞ ¼ Imag SDR
ðoÞ

� �
. (27)

The frequency range in which Eq. (27) is valid has to be decided by considering the eigenvalues of SDuu ðoÞ.
A numerical study to determine the frequency range in conjunction with the eigenvalues of SDuuðoÞ is
conducted in Section 3.2.

3. Errors related to dynamic stiffness matrix approach

3.1. Errors induced by the dynamic stiffness matrix approach itself

The dynamic stiffness matrix method is a frequency domain method; therefore can be applied only to
linearly behaving systems. While implementing the dynamic stiffness matrix approach described in Eqs. (2)
and (3), both heavily and lightly damped systems will potentially pose challenges. Generally, a system is
considered lightly damped when the average modal damping ratio is smaller than 1%. The challenge in lightly
damped systems stems from the fact that the method tries to find the spatial distribution of very small
quantities, thus even very small measurement errors are manifested in inverting the FRF matrix as in Eq. (2).
A detailed study of the effect of measurement errors and their effects on the estimation of damping matrices is
the subject of the on-going work of the authors.

The difficulty in a highly damped system is that the useful frequency range of the experimental model
becomes small as the approximation associated with Eq. (27) has more pronounced effect.
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3.2. Error in relating experimental and analytical damping matrices

In order to understand the error associated with the expansion transformation in Eq. (27), which is
~TðoÞTLðoÞ ~TðoÞ ¼ Imag SDR

ðoÞ
� �

, we consider three numerical examples. The first case is when a 4 dofs model
is represented by a 2 dof experimental model, which was also used earlier in Section 2.3 as an example to study the
frequency dependency of the transform. The second case is when a 10 dof model is represented by a 5 dof
experimental model using its 2nd, 4th, 6th, 8th, and 10th degrees of freedom. The third case is when the same 10 dof
model of the second case is represented by a 3 dof experimental model using its 1st, 5th, and 10th degrees of freedom.
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First, the error norm to conduct the error analysis is defined as

eðoÞ ¼ Imag SDR
ðoÞ

� �
� ~TðoÞTLðoÞ ~TðoÞ, (28)

where eðoÞ is a matrix of size M�M which represents the error involved in Eq. (27) as a function of frequency.
Then, the percent error matrix epðoÞ is defined as follows.

epðoÞ
� �

ij
¼

eðoÞð Þij

Imag SDR
ðoÞ

� �
ij

� �
������

������� 100. (29)

At each frequency, the maximum valued element in epðoÞ is used to quantify the error associated with the
transformation in Eq. (27).

We consider the first numerical case for when the system average modal damping ratio is 1.2%. The
maximum value of the percent error matrix epðoÞ for this particular damping level is plotted as a function of
frequency in Fig. 14, showing that the maximum error is about 0.1% at a frequency of 63Hz. This frequency is
about 62% of the lowest eigenvalue of SDuu ðoÞ, which is equal to 97Hz. Looking at the same plot, we can also
deduct that for the maximum value of the percent error to be equal to 1%, the ratio of the frequency to the
lowest eigenvalue of SDuu ðoÞ should be 0.68.

Plots similar to Fig. 14 can be constructed at other levels of modal damping ratio. The error level will
depend on the damping level as well as the reduction ratio of dofs. In order to study the effect of the reduction
ratio, the second and third numerical cases are compared, which represent the same 10 degrees of freedom
model by two experimental models of 5 and 3 dofs, respectively. Final results are presented in Figs. 15a and b,
which show the frequency range for 0.1% and 1% error in terms of the ratio to the lowest eigenvalue of
SDuu ðoÞ. The comparisons are made for the range of 1–10% average modal damping ratio. As expected, the
frequency limit for the transformation in Eq. (27) to be valid decreases as the damping level increases. The
comparisons also show that the higher reduction ratio increases the error.

For example, Fig. 15a shows that the limiting frequency for an experimental model, in which Eq. (27)
is valid within 0.1% error, is about 0.65 times the lowest eigenvalue of SDuu ðoÞ. This is for the case when the
average damping ratio is 1%. The limiting frequency is 0.45 times the lowest eigenvalue of SDuuðoÞ, if the
system damping ratio level is about 10%. If the desired error level is 1%, Fig. 15b can be used in a similar way.

4. Expanding experimental damping matrix for hybrid modeling

Enabling the analytical–experimental hybrid modeling was the original motivation in developing the
DSM-based damping identification method [23]. The idea is to build a simulation model of a dynamic system
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Fig. 14. Maximum percent error plot for Eq. (27).
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by combining analytically formulated mass and stiffness matrices with an experimentally identified damping
matrix. The approach makes a perfect sense because the damping matrix cannot be formulated analytically
like the mass and stiffness matrices. However, the damping matrix obtained from the DSM approach is much
smaller than that of the analytical model in general; therefore the matrix should be expanded to the size of the
analytical model. Two expansion methods are presented in Sections 4.1 and 4.2.

4.1. Method 1: expansion of damping matrix based on the transformation equation

4.1.1. Development of the method

Eq. (27) that relates the analytic damping matrix L(o) to the experimental damping matrix ImagðSDR
ðoÞÞ

can be used to expand the experimental damping matrix.
Because L(o) is a general function of frequency, Eq. (27) provides a new matrix relationship, thus a distinct

set of linear equations, at each frequency point. However, because L(o) is a much bigger matrix than SDR
ðoÞ,

the number of unknowns to be found (N2 at each frequency) far exceeds the number of equations available
(M2 at each frequency). The number of unknowns can be reduced substantially by assuming the form of the
frequency dependency of L(o) as follows:

LðoÞ ¼
XS

i¼1

f iðoÞCi, (30)
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where f iðoÞ is the ith frequency function, S is the number of frequency functions, Ci is the ith coefficient
matrix.

Substituting Eq. (30) into Eq. (27):

~TðoÞT
XS

i¼1

f iðoÞCi
~TðoÞ ¼ Imag SDR

ðoÞ
� �

. (31)

At each frequency, Eq. (31) provides M2 linear equations of Ci in the following form:

uj�k ðC1Þ11; ðC1Þ12; . . . ; ðC1ÞNN ; . . . ; ðC2ÞNN ; . . . ðCSÞNN ;o
� �

¼ Imag SDR
ðoÞ

� �
jk

� �
,

j ¼ 1 . . .M and k ¼ 1 . . .M , ð32Þ

where un is the nth function with individual elements of coefficient matrices Ci’s and frequency o as
independent variables. Unknown parameters in Eq. (32) are the elements of coefficient matrices Ci’s.
Therefore, the number of unknowns is S�N�N where S is the number of frequency functions used in
Eqs. (30) and (31). Eq. (32) can be set up at as many frequency points as necessary to have enough number of
equations. If the number of equations exceeds the number of unknowns, the problem becomes over-
determined and can be solved by a linear regression method.

For instance, if we assume a second-order polynomial type frequency distribution for the damping matrix,
Eq. (30) reduces to

LðoÞ ¼ C1 þ oC2 þ o2C3, (33)

where f 1ðoÞ ¼ 1, f 2ðoÞ ¼ o, and f 3ðoÞ ¼ o2. C1, C2, and C3 are constant matrices that have to be found.
Adding more polynomial terms in the form of f iðoÞ ¼ oi, enables a more general representation of damping;
however at the cost of increasing unknowns to be found.
4.1.2. Numerical example: viscously damped system

If the approach just discussed is applied assuming that the system is viscously damped, the damping
function f 1ðoÞ will be equal to o with C1 ¼ C and S ¼ 1. Therefore;

LðoÞ ¼ oC. (34)

In this case, Eq. (31) can be rewritten in a summation form as follows:

~TðoÞTC ~TðoÞ ¼
Imag SDR

ðoÞ
� �
o

) � � �
XN

k¼1

XN

j¼1

~TjiCjk

 !
~Tks ¼

Imag SDRis

� �
o

. (35)

For one particular frequency, Eq. (35) can be expanded as

ð ~T1i
~T1sÞo1

ð ~T1i
~T2sÞo1

� � � ð ~T1i
~TNsÞo1

ð ~T2i
~T1sÞo1

� � � ð ~TNi
~TNsÞo1

h i

C11

C12

..

.

C1N

C2N

..

.

CNN

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

Imag SDRis

� �
o1

o1
.

(36)
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Right-hand side of Eq. (36), can also be written as a column vector; i.e.:

~T11
~T11

� �
o1

~T11
~T21

� �
o1

� � � ~T11
~TN1

� �
o1

~T21
~T11

� �
o1

� � � ~TN1
~TN1

� �
o1

~T11
~T12

� �
o1

~T11
~T22

� �
o1

� � � ~T11
~TN2

� �
o1

~T21
~T12

� �
o1

� � � ~TN1
~TN2

� �
o1

..

. ..
. . .

. ..
. ..

. . .
. ..

.

~T11
~T1M

� �
o1

~T11
~T2M

� �
o1
� � � ~T11

~TNM

� �
o1

~T21
~T1M

� �
o1
� � � ~TN1

~TNM

� �
o1

~T12
~T1M

� �
o1

~T12
~T2M

� �
o1
� � � ~T12

~TNM

� �
o1

~T22T1M

� �
o1
� � � ~TN2

~TNM

� �
o1

..

. ..
.

� � � ..
. ..

. . .
. ..

.

~T1M
~T1M

� �
o1

~T1M
~T2M

� �
o1
� � � ~T1M

~TNM

� �
o1

~T2M
~T1M

� �
o1
� � � ~TNM

~TNM

� �
o1

2
666666666666666666664

3
777777777777777777775

C11

C12

..

.

C1N

C2N

..

.

CNN

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

� � � ¼
1

o1

�

Imag SDR11

� �
Imag SDR12

� �
..
.

Imag SDR1M

� �
Imag SDR2M

� �
..
.

Imag SDRMM

� �

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

o1

. ð37Þ

Eq. (37) can be written in a more compact form:

Ao1

C11

C12

..

.

C1N

C2N

..

.

CNN

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼
1

o1

Imag SDR11

� �
Imag SDR12

� �
..
.

Imag SDR1M

� �
Imag SDR2M

� �
..
.

Imag SDRMM

� �

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

o1

, (38)

where Ao1 is the coefficient matrix shown in Eq. (37). Eq. (38) can be expanded by applying it at multiple
frequencies (i.e. o ¼ o1 � � �ok):
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Ao1

..

.

Aok

2
6664

3
7775

C11

C12

..

.

C1N

C2N

..

.

CNN

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

1

ok

Imag SDR11

� �
..
.

Imag SDRMM

� �

8>>>><
>>>>:

9>>>>=
>>>>;

o1

..

.

1

ok

Imag SDR11

� �
..
.

Imag SDRMM

� �

8>>>><
>>>>:

9>>>>=
>>>>;

ok

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

. (39)

Finally, the elements of the viscous damping matrix can be calculated from

C11

C12

..

.

C1N

C2N

..

.

CNN

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

1

ok

Imag SDR11

� �
..
.

Imag SDRMM

� �

8>>>><
>>>>:

9>>>>=
>>>>;

o1

..

.

1

ok

Imag SDR11

� �
..
.

Imag SDRMM

� �

8>>>><
>>>>:

9>>>>=
>>>>;

ok

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

Ao1

..

.

Aok

2
6664

3
7775
þ

. (40)

Expansion of the experimental damping matrix Imag SDR
ðoÞ

� �
is conducted by solving Eq. (40). The right-

hand side of this equation contains Imag SDR
ðoÞ

� �
and Ao1 , which are expected to be available from

experiment and analytical model, respectively. The unknown vector consists of the elements of the expanded
viscous damping matrix C, which is defined at the analytical model dof.

As a specific example, we consider a 10 degrees of freedom lumped parameter model shown in Fig. 16. The
system parameters are k ¼ 2.5� 105N/m, m ¼ 1.0 kg, and c ¼ 10.0N s/m. It is assumed that 2nd, 4th, 6th, 8th,
and 10th degrees of freedom are measured and they constitute the experimental model.

In order to decide the maximum frequency to use in the expansion procedure, the singular value plots of the
measured frequency response function matrix shown in Fig. 17 can be used. From the singular value plots, the
lowest eigenvalue of SDuuðoÞ is recognized as 115Hz. The average modal damping ratio is estimated as about
2%. Based on Fig. 15a, the maximum frequency of the range is estimated as about 0.65 times of 115, or 74Hz.
This would limit the error associated with using Eq. (27) within 0.1%. Frequencies to implement Eq. (40) are
chosen in this range.

The original damping matrix of the 10 degrees of freedom model is given in Table 1. The expansion process
consists of computation of the elements of the expanded damping matrix using Eq. (40). The damping matrix
obtained by expanding the 5� 5 matrix corresponding to the 2nd, 4th, 6th, 8th, and 10th degrees of freedom,
is given in Table 2. The expanded damping matrix is quite close to the original one, which demonstrates the
validity of the proposed procedure to expand the experimental damping matrix.

In order to demonstrate the significance of using the proper frequency range, we apply the expansion
procedure choosing frequency points from the range that includes the antiresonance point of the singular
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value plots. This introduces large errors in the basic transformation in Eq. (27). Expansion results are
presented in Table 3, which show large errors as expected.

In order to test the expansion procedure for a nonproportional damping matrix, an additional case is
considered where two of the damping coefficients for the 10 dof original model defined earlier are increased
significantly. The damper that connects the fixed end to the 1st mass and the damper that connects the 6th and
7th masses are both increased by ten times. The new damping matrix, which is given in Table 4, represents a
nonproportional system with two regions of localized damping.

Same 5� 5 experimental model, which is composed of 2nd, 4th, 6th, 8th, and 10th dofs, is used to obtain the
experimental DSM. Due to modified damping elements, the average modal damping ratio increases to about
3.8%. Considering this average damping ratio value and utilizing Fig. 15a, the maximum frequency of the
range to be used in the matrix expansion process is estimated as about 0.5 times the lowest eigenvalue of
SDuu ðoÞ, which is identified earlier as 115Hz from Fig. 17. The expanded damping matrix is given in Table 5.
It successfully identifies the regions of high localized damping, however with reduced overall accuracy
compared to the proportional damping case. This is probably caused by the increased error in the basic
relationship Eq. (27), since overall damping level of the system is increased.

4.2. Method 2: simplified method of damping matrix expansion

In most practical applications, the analytical model is significantly larger than the experimental model. In
such cases, the expansion method developed in Section 4.1 starts to become impractical as it requires solving
for a huge number of unknowns. For example, if the analytical model has 1000 degrees of freedom—a modest
size as a numerical model—and if the damping matrix is described by three constant matrices (see Eq. (33)), a
total of 3,000,000 equations have to be solved. An alternative approach is expanding the identified
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Table 1

Original viscous damping matrix of the 10 degrees of freedom lumped parameter model (units N s/m)

20 �10 0 0 0 0 0 0 0 0

�10 20 �10 0 0 0 0 0 0 0

0 �10 20 �10 0 0 0 0 0 0

0 0 �10 20 �10 0 0 0 0 0

0 0 0 �10 20 �10 0 0 0 0

0 0 0 0 �10 20 �10 0 0 0

0 0 0 0 0 �10 20 �10 0 0

0 0 0 0 0 0 �10 20 �10 0

0 0 0 0 0 0 0 �10 20 �10

0 0 0 0 0 0 0 0 �10 10

Table 2

Expanded viscous damping matrix of the 10 degrees of freedom lumped parameter model—1st case (units N s/m)

19.985 �9.992 0 0 0 0 0 0 0 0

�9.992 19.991 �9.992 �0.004 0 0 0 0 0 0

0 �9.992 19.985 �9.992 0 0 0 0 0 0

0 �0.004 �9.992 19.991 �9.992 �0.004 0 0 0 0

0 0 0 �9.992 19.985 �9.992 0 0 0 0

0 0 0 �0.004 �9.992 19.991 �9.992 �0.004 0 0

0 0 0 0 0 �9.992 19.985 �9.992 0 0.

0 0 0 0 0 �0.004 �9.992 19.991 �9.992 �0.004

0 0 0 0 0 0 0 �9.992 19.985 �9.992

0 0. 0 0 0 0 0 �0.004 �9.992 9.996

Table 3

Expanded viscous damping matrix of the 10 degrees of freedom lumped parameter model—2nd case (units N s/m)

0.167 �9.492 0 0 0 0 0 0 0 0

�9.492 352.83 �9.492 166.42 0 0 0 0 0 0

0 �9.492 0.167 �9.492 0 0 0 0 0 0

0 166.42 �9.492 352.83 �9.492 166.42 0 0 0 0

0 0 0 �9.492 0.167 �9.492 0 0 0 0

0 0 0 166.42 �9.492 352.83 �9.492 166.42 0 0

0 0 0 0 0 �9.492 0.167 �9.492 0 0

0 0 0 0 0 166.42 �9.492 352.83 �9.492 166.42

0 0 0 0 0 0 0 �9.492 0.167 �9.492

0 0 0 0 0 0 0 166.42 �9.492 176.42

Table 4

Original viscous damping matrix of the nonproportionally damped 10 degrees of freedom lumped parameter model (units N s/m)

110 �10 0 0 0 0 0 0 0 0

�10 20 �10 0 0 0 0 0 0 0

0 �10 20 �10 0 0 0 0 0 0

0 0 �10 20 �10 0 0 0 0 0

0 0 0 �10 20 �10 0 0 0 0

0 0 0 0 �10 110 �100 0 0 0

0 0 0 0 0 �100 110 �10 0 0

0 0 0 0 0 0 �10 20 �10 0

0 0 0 0 0 0 0 �10 20 �10

0 0 0 0 0 0 0 0 �10 10
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Table 5

Expanded viscous damping matrix of the nonproportionally damped 10 degrees of freedom lumped parameter model (units N s/m)—1st

case (units N s/m)

93.755 �8.473 6.781 1.332 �6.781 �1.813 9.589 �2.825 0 4.778

�8.473 17.981 �7.141 �0.003 �0.481 0.000 �4.638 0 1.953 0.000

6.781 �7.141 13.210 �13.701 6.781 6.931 �9.589 5.51 0 �6.731

1.332 �0.003 �13.701 19.995 �6.289 �0.003 17.078 0.000 �3.174 0

�6.781 �0.481 6.781 �6.289 13.210 �37.710 9.589 �19.413 0.000 9.905

�1.813 0 6.931 �0.003 �37.710 111.181 �74.201 �0.462 �6.335 0

9.589 �4.638 �9.589 17.078 9.589 �74.201 100.535 �9.189 0 �3.570

�2.825 0 5.510 0.000 �19.413 �0.462 �9.189 17.981 �6.425 �0.003

0 1.953 0 �3.174 0 �6.335 0 �6.425 19.990 �9.995

4.778 0 �6.731 0 9.905 0 �3.570 �0.003 �9.995 9.997
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experimental damping matrix to the size of the analytical model, simply by embedding zero elements to the
experimental damping matrix.

4.2.1. Development of the method

The DSM of an N degree of freedom model can be written in an expanded form to show measured and
unmeasured components as follows (recall Eq. (12)):

SDðoÞ ¼
�o2Mmm þ jLmm þ Kmm �o2Mmu þ jLmu þ Kmu

�o2Mum þ jLum þ Kum �o2Muu þ jLuu þ Kuu

" #
, (41)

where subscript m and u indicates measured and unmeasured degrees of freedom. For the hybrid modeling, all
the mass and stiffness matrices are assumed available. The damping matrix terms Lmm, Lmu, Lum, Luu are
obtained from the damping matrix LhðoÞ, which is constructed by padding zeros to the experimental damping
matrix Imag SDR

ðoÞ
� �

at the unmeasured dofs, i.e.:

LhðoÞ ¼
Imag SDR

ðoÞtest
� �

0mu

0um 0uu

" #
, (42)

where 0’s are zero matrices. The expansion defined in Eq. (42) implies that experimentally identified damping
effect is distributed only at the measured dofs, which keeps the spatial information in a very approximated
sense.

Now, combining the mass and stiffness matrices M and K from the analytical model and the expanded
damping matrix LhðoÞ, the hybrid equation of motion is obtained as follows:

ð�o2Mþ jLhðoÞ þ KÞXðoÞ ¼ FðoÞ. (43)

4.3. Numerical example

The validity of the proposed approach is demonstrated by using the same 10 dof lumped parameter model
shown in Fig. 16, which was also used as the numerical example for the first expansion method. Same system
parameters are used, which are k ¼ 2.5� 105N/m, m ¼ 1.0 kg, and c ¼ 10.0N s/m. The experimental model is
also composed of five of the dofs of the original model, which are 2nd, 4th, 6th, 8th, and 10th dofs.

The 5� 5 damping matrix expanded by applying Eq. (42) is combined with the original 10� 10 mass and
stiffness matrices to make the hybrid model. The validity of the approach can be seen by comparing the
frequency response functions obtained by solving the equations of motion of the original 10 dof model and the
hybrid 10 dof model (see Figs. 18 and 19, respectively). At the measured dofs, the hybrid model accurately
reproduces the original frequency response functions in the entire frequency range, as seen in the spatial plot
for the measured portion of the FRF matrix HmmðoÞ (Fig. 18). Hybrid frequency response functions
calculated at the unmeasured dof are accurate in the low-frequency range; however start to show large errors
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around the lowest eigenvalue of SDuu ðoÞ, as can be seen in the spatial plot of the unmeasured portion of the
FRF matrix HuuðoÞ (Fig. 19).

This simple numerical example shows that if the hybrid model is used within the frequency range, for which
Eq. (27) is valid, the model provides accurate results at all dofs. Even in the frequency range beyond the limit,
the hybrid model provides accurate results, however, only for the FRFs at the measured dofs. Therefore, the
valid frequency range for the hybrid model can be kept as same as the range of the experimental FRFs, only if
the experimental model contains all the dofs at which we would like accurate synthesis of frequency response
functions. Nevertheless, the method provides a very simple yet practical approach to expand the
experimentally identified damping matrix to construct hybrid models.
5. Conclusion

Application of the DSM-based damping matrix identification method is discussed in this paper. This
method offers several distinct advantages over other damping matrix identification methodologies that use the
inherent assumption of proportional damping. Firstly, the damping matrix is obtained directly from
experimental frequency response functions, which eliminates the need for experimental modal analysis to
extract modal parameters. Secondly, the method offers a more accurate spatial distribution of the damping in
the system because it does not use any assumption on the spatial distribution of damping as in the case of
identifying damping by assuming proportional damping. Thirdly, the method finds the damping mechanism in
a frequency-dependent form, which enables to identify damping mechanisms other than viscous damping.

The major contribution of this paper to the DSM-based methodology is to provide theoretical backgrounds to
develop a method to expand the measured damping matrix to the size of the analytical model of significantly larger
size. The motivation of the DSM-based method proposed by Lee and Kim [23] was to enable hybrid modeling by
combining an experimentally obtained damping matrix with analytically formulated mass and stiffness matrices. In
this paper, the errors associated with the identification method and the problems associated with expansion of the
experimental matrix are studied with numerical examples. A method is established to estimate the frequency limit in
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which the damping matrix obtained from the DSM approach is valid. This method will serve as a useful guideline for
effective use of the DSM-based damping identification approach as well as general experimental modeling.

Two approaches to expand the experimentally formulated damping matrix to the size of the analytic model are
developed and discussed in detail. In the first approach, the experimental matrix is expanded by solving
simultaneous equations derived from the transformation equation relating the experimental and analytical
damping matrices. The second approach expands the experimental matrix by padding zeros to the elements of the
matrix corresponding to the dofs that are not measured, which makes it a much simpler way compared to the first
one. Also, the latter will be a more practical approach when the number of dofs of the system becomes large.
Validity of both methods have been demonstrated with simple numerical examples. Further investigation and
development of these methods are a part of authors’ ongoing research work, which includes the cases of large
model reduction/expansion, localized nonproportional damping, and nonviscous damping.

Appendix A. Reduced matrix representation of experimental dynamic stiffness matrix

The second part of Eq. (12) that relates the response and force vectors XðoÞ and FðoÞ is

SDum ðoÞXmðoÞ þ SDuu ðoÞXuðoÞ ¼ 0. (A.1)

Therefore,

XuðoÞ ¼ �SDuu ðoÞ
�1SDum ðoÞXmðoÞ ¼ RumðoÞXmðoÞ, (A.2)

where RumðoÞ ¼ �SDuu ðoÞ
�1SDumðoÞ.

The response vector XðoÞ of the full size model and the measured response vector XmðoÞ are related as
follows:

XðoÞ ¼
XmðoÞ

XuðoÞ

( )
¼

XmðoÞ

RumðoÞXmðoÞ

( )
¼

I

RumðoÞ

" #
XmðoÞ ¼ TðoÞXmðoÞ, (A.3)

where TðoÞ is the transformation matrix and defined as follows:

TðoÞ ¼
I

RumðoÞ

" #
¼

I

�SDuuðoÞ
�1SDumðoÞ

" #
. (A.4)
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The harmonic equation of motion of the experiment, based on the full size model is

SDðoÞXðoÞ ¼ ð�o2Mþ jLðoÞ þ KÞXðoÞ ¼
FmðoÞ

0

	 

. (A.5)

Substituting Eq. (A.3) into Eq. (A.5),

ð�o2Mþ jLðoÞ þ KÞTðoÞXmðoÞ ¼
FmðoÞ

0

	 

. (A.6)

If a force vector is defined such that FmðoÞi ¼ 1mi, which has all components as zero but the component at
ith row is 1, the response vector becomes the FRF vector. Applying such a vector 1� 1 to all measured dofs
(i.e. i ¼ 1yM) and combining the results, the following equation is obtained:

ð�o2MTðoÞ þ jLðoÞTðoÞ þ KTðoÞÞHmmðoÞ ¼
Imm

0um

" #
. (A.7)

Pre-multiply both sides of Eq. (A.7) by TðoÞT,

ð�o2TðoÞTMTðoÞ þ jTðoÞTLðoÞTðoÞ þ TðoÞTKTðoÞÞHmmðoÞ ¼ . . .TðoÞ
T

Imm

0um

" #
. (A.8)

Noting that

TðoÞT
Imm

0um

" #
¼ Imm RmuðoÞ
� � Imm

0um

" #
¼ Imm,

Eq. (A.8) is now reduced to

ð�o2TðoÞTMTðoÞ þ jTðoÞTLðoÞTðoÞ þ TðoÞTKTðoÞÞHmmðoÞ ¼ Imm. (A.9)

By definition, the dynamic stiffness matrix is the inverse of the frequency response function matrix,
therefore, from Eq. (A.9):

�o2MRmm ðoÞ þ jLRmm ðoÞ þ KRmm ðoÞ ¼ � � � � o2TðoÞTMTðoÞ þ joTðoÞTLðoÞTðoÞ þ TðoÞTKTðoÞ. (A.10)

Now, the matrices of the reduced-size experimental and full-size analytical models are related as

MRmm ðoÞ ¼ TðoÞTMTðoÞ, (A.11)

LRmm ðoÞ ¼ TðoÞTLðoÞTðoÞ, (A.12)

KRmm ðoÞ ¼ TðoÞTKTðoÞ. (A.13)

The dynamic stiffness matrix of the experimental model is

SDR
ðoÞ ¼ �o2MRmm ðoÞ þ joCRmm ðoÞ þ KRmm ðoÞ. (A.14)
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